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This paper describes a Bayesian approach to mixture modelling and a method based on predic- 
tive distribution to determine the number of components in the mixtures. The implementation 
is done through the use of the Gibbs sampler. The method is described through the mixtures of 
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1. Introduction 

The use of mixture models in statistics has proved to be of 
considerable interest in recent years, in terms of methodolo- 
gical development and in their application to the most dis- 
parate fields of interest. This has led to many published 
papers and books by Everitt and Hand (1981), Tittering- 
ton et al. (1985) and McLachlan and Basford (1988). 
The primary reason for the interest in mixture distri- 
butions is that mixture models provide an interesting alter- 
native to non-parametric modelling, while being less restric- 
tive than the usual distributional assumptions; located 
between these two extremes, they enjoy simultaneously a 
greater freedom and the simplicity of the parametric 
approach. Mixture distributions are applied in several 
branches of science, including actuarial sciences, agricul- 
ture, biology, economics, fisheries, genetics, medicine, and 
psychology. 

In this paper, we consider two rich classes of finite 
mixture distributions, the mixture of normal distributions 
and the gamma distributions. Both of these classes of 
mixture distributions play an important role in statistical 
inference. We show that Bayesian methods can be easily 
implemented for these models. We also see that Bayes 
estimators associated with proper prior distributions 
0960-3174 �9 1995 Chapman & Hall 

always exist, unlike the maximum likelihood estimators. 
Bayes estimators under 'conjugate' prior distributions are 
expressible in closed form and are easily interpretable. 
Moreover, the performances of the Bayesian methods are 
usually superior to the maximum likelihood methods for 
small sample sizes. 

The main criticism of the Bayesian approach in 
mixture problems is that it leads to prohibitive computation 
times for moderate-sized or large problems. However, 
we show that a sampling based approach is attractive in 
that implementation is easy and computing is reasonably 
efficient. Such simulation approaches might be non- 
iterative, such as standard Monte Carlo (see for example 
Geweke, 1989) or iterative, as for example using the 
Gibbs sampler or other Markov chain Monte Carlo techni- 
que (see for example Gelfand and Smith, 1990; Tierney, 
1994). 

The model we consider is a parametric family of finite 
mixture densities; i.e. a family of probability density func- 
tions of the form 

k 

f(k)(x]O) = Z pffj(xlOj), (1) 
j = l  

where the densities fj (1 < j < k) are entirely known and 
parametrized by Oj, j =  1 , . . . ,k ,  the proportions 
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0 < pj < 1 satisfy ~ k  l j = pj = 1 and k is the number of com- 
ponents. We denote p = (Pl,.-. ,Pk), 0 =  (Pl,. .- ,Pk, 
01,. . . ,0k),  where 0j can be a vector of parameters. We 
observe x = (Xl,. . . ,  x,), a random sample of size n from 
(1). 

One of the major problems in mixture models is to 
choose k, the number of components. In most analysis 
of mixture modelling, k is assumed to be known. If 
k is unknown, one can consider a discrete prior on 
possible values of k and perform a Bayesian analysis. 
However, it is difficult to agree on an appropriate 
choice of prior in this case; for example, if discrete 
uniform is proposed, an upper bound on k needs to be 
assumed. 

In this paper we consider k to be unknown but not 
random and determine it from a predictive distribution 
approach. It is clear that every distinct values of k gives 
rise to a new statistical model. The predictive distribution 
suggests, for a given data, how to obtain an appropriate 
choice of k by selecting the best fitted model. 

The use of predictive distributions in some form has long 
been recognized as the correct Bayesian approach to model 
determination. In particular, Box (1980) notes the comple- 
mentary roles of the posterior and predictive distributions, 
arguing that the posterior is used for 'estimation of para- 
meters conditional on the adequacy of the model' while 
the predictive distribution is used for 'criticism of the enter- 
tained model in light of the current data'. In comparing 
several models (with different number of parameters), it is 
clear that the predictive distributions are comparable while 
the posteriors are not. 

Box and others have encouraged a less formal approach 
to Bayesian model choice, resulting in alternative predic- 
tionist criteria to the Bayes factor. Using cross-validation 
ideas (Stone, 1974; Geisser, 1982) gives rise to the pseudo- 
Bayes factor (Geisser and Eddy, 1979). This cross- 
validation method with its asymptotic approximations and 
exact calculations using Markov chain Monte Carlo 
approaches are explored in Gelfand and Dey (1994) and 
Gelfand et aL (1992). 

In this paper we consider the cross-validation approach 
of model selection using the pseudo-Bayes factor and 
CPO (conditional predictive ordinate) to determine the 
number of components. In addition, we also consider 
exploratory data analysis approaches using graphical dis- 
plays. The cross-validation approach has the advantage 
of being able to incorporate improper priors whereas the 
Bayes factor approach may not always work because 
marginal densities may not exist or may be arbitrary under 
improper prior specifications. 

There are many articles on Bayesian analysis for mixture 
distributions (see, for example Titterington et al. 1985), and 
here we mention only a few recent papers. Diebolt and 
Robert (1994) study sampling-based approaches to approx- 
imating the Bayes estimates for finite mixtures of normal 
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distributions assuming the number of components k is 
known. Crawford (1991) proposes a modification of the 
Laplace method to estimate the Bayes estimators. In 
addition, she considers the problem of estimating the 
number of components k, where a Bayesian formulation 
treats k as an unknown parameter with a given prior distri- 
bution. West (1992) proposes an adaptive method for esti- 
mating the posterior distribution and mixture pruning 
methods, useful for reducing the number of components 
of large mixtures. Evans et al. (1992) consider Bayesian 
inference for a mixture of two normal distributions. They 
derive a prior by invariance consideration. They propose 
importance sampling and Gibbs sampling algorithms to 
compute the Bayes estimates. 

The problem of determining the number of components 
can also be studied using the likelihood ratio (LR) statis- 
tic. The difficulty of this approach is that the regularity con- 
ditions do not hold. The appropriate LR statistic for 
mixture models will fail to have its usual null distribution 
of chi-squared. However, many authors have recognized 
the power of bootstrap procedures to overcome this diffi- 
culty, see for example McLachlan (1987). As described 
there, the LR statistic for testing the null hypothesis of 
k = kl versus the alternative k - - k  2 can be bootstrapped 
as follows. First, find the maximum likelihood estimate, 
/~, of 0 from the given data under the assumption of 
k = kl components. This maximization can be done using 
the E-M algorithm. Then generate a bootstrap sample 
fromf(kl)(xl0). Now, the mixture models with k = kl and 
/<2 can be fitted to this sample and the LR statistic can be 
computed. This method may be repeated to simulate the 
null distribution and subsequently an approximate LR 
test can be carried out. 

The outline of the paper is thus the following. In Section 
2, we develop Bayesian formulation of the mixture 
models and the conditional distributions needed for the 
Gibbs sampler. Section 3 is devoted to the development 
of predictive distribution using the cross-validation 
approach and its Monte Carlo estimates. In Section 4, 
we apply our method for the normal mixtures. A simu- 
lated example is provided for the determination of the 
number of mixtures. In Section 5, we describe the Gibbs 
sampling procedure for the gamma mixtures. In this 
section we consider Halley's mortality data (see Nelson 
(1982), p. 17) and model it by mixture of gamma distri- 
butions. The hazard function for this data is bathtub 
shaped and our method suggests the need for mixtures of 
three gamma distributions. For both the examples we 
compare our Bayesian results with those of approximate 
LR tests performed by using the bootstrap procedure to 
simulate from the null distribution. We use the E-M algo- 
rithm to carry out the maximization of the mixture likeli- 
hood needed to perform the LR tests in both the 
examples. We conclude with some summarizing remarks 
in Section 6. 
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2. The Bayesian formulation of mixture models 

Dempster e t al. (1977) pointed out that a mixture model can 
always be represented in terms of incomplete data. Suppose 
Zi = (z i l , . . . ,  zik), i = 1 , . . . ,  n, is a k-dimensional vector of 
indicator variables, i.e. z U = 1 if xi is the j th  group and 0 
otherwise with ~k= ~ zij = 1, then the density of the com- 
plete data (xi, zi) is given as 

k 

I X  ~ " pj f j (xilOj), i 1,.. ,n. (2) Zij Zij 

j = l  

In Bayesian framework, zij can be treated as parameters�9 
This makes a difference from a classical point of view. The 
advantage of using zij as a parameter is that it allows us to 
specify conditional distributions needed in the Gibbs sam- 
pier. The only disadvantage is the computational burden. 
However, with the use of the recently developed Markov 
chain Monte Carlo approach, e.g. the Gibbs sampler and 
the Metropolis algorithm, the computational steps are 
straightforward to implement. 

Let us now describe our computational steps. We use the 
Gibbs sampling scheme to generate the samples from the 
posterior distribution and then use the Monte Carlo 
approach to estimate the predictive density. The Gibbs 
sampling is a Monte Carlo integration method which pro- 
ceeds by Markovian updating scheme. It was developed 
by Geman and Geman (1984) in the context of image 
restoration. More recently, Gelfand and Smith (1990) 
showed applicability to general parametric Bayesian com- 
putations�9 The literature on Gibbs sampling is now vast, 
and here we only describe the conditional distributions 
needed to draw samples. We can decompose the parameter 
0 into s components, u = (u t , . . . ,  us), where ui, i = 1 , . . . ,  s, 
can be a vector of parameters�9 Let Z = ( Z l , . . . ,  Zn). Now 
at step t, we draw samples as follows: 

Z(t + 1) ~ f (zlx, u (t)) 

( t+l)  ,w(t+ l) (t) 
u I " ~ f ( u l l x ,  . .  , u ~  O) L, ,U 2 ,. 

(~+l ) ,u~) ,  .. u~))  u2(' + 1) "~ f (u2lx, Z (t + 1), Ul . 

. ( t + l )  (t + 1),~ Us(t+l) ,,~f(uslx, Z(t+l) ul ,. .. ,Us-I )�9 

We repeat this ~rocess and after T such iterations 
arrive at ( Z ( r ) , u l ) , . . . , u ! r ) ) .  We run B independent 

�9 �9 - �9 ( T ) j  ( T ) ]  ( T ) j  parallel rephcanons and obtain (Z ,u 1 , . . . , u~  ), 
j = 1 , . . . ,  B, i.i.d. (approximately) samples of size B. The 
resulting sample can lead to an approximation of any 
well-defined posterior quantity by the ergodic theorem�9 

3. Predictive distributions and Monte Carlo estimates 

As mentioned before, we consider a cross-validation 

approach for the predictive distribution. Defining 
X ( i ) = ( X 1 , . . . , X i _ l , X i + l , X n )  , it follows from Gelfand 
e t al. (1992) that the conditional predictive density of X,.Ix (i) 
is 

f(k)(xdxii)) = I f(~)(xilO, x(i))Tr(k)(Olx(i)) dO 

= If(k)(xilO)Tr(k)(OIx(o)dO, (3) 

of where 7r(k)(Olx(i)) is the posterior distribution 
O = ( p l , . . . , p k ,  Ot,. . . ,Ok) given x(i) under the prior 
7r(k)(0). We drop the conditioning variable x(i) in 
f(k)(xilO ) because of conditional independence�9 The 
quantity f (k)(xilx(i)) is known as the conditional predictive 
ordinate (CPO). After obta in ingf  (k) (xilx(i)) , we define the 
pseudo-predictive likelihood as 

n 

Dk =-- I I  f(k)(xilx(i) ) (4) 
i = l  

and choose k which maximizes D k. To compare between 
two models, say model 1 versus model 2, we define the 
pseudo-Bayes factor as the ratio of the pseudo predictive 
likelihoods, denote it as PB12 and use Jeffreys' (1961), scale 
of evidence. Since our procedure is more exploratory in 
nature, we consider several graphical plots in addition to 
the single summary measures like D k and the pseudo-Bayes 
factor. The CPO plots describe for each observation, how 
much it supports the model. A second useful diagnostic 
display plots, for i =  1,. . .  ,n, the pairs I x i -  F,(k)(Xi[x(i)) I 
versus ~/v(k)(Xi[x(i)) , where I ?(k) is the estimated 
conditional variance. A good model should reveal a 
point cloud near the origin. An underfitted model will 
tend to present large abscissas or ordinates. An overfitted 
model will tend to give small abscissas but large 
ordinates. A parsimonious choice should perform well on 
both axes. 

Now we describe how arbitrary accurate estimates of (3) 
and (4) can be obtained using the Markov chain Monte 
Carlo technique. It follows from (3) that 

I f  (k)(x[O)Tr(k) dO (0) 

f(k)(xilX(i)) = [ f(k)(x(i)lO)Tr(k)(o ~ )  dO" 

Suppose g(O) is an importance sampling density for 
f(k)(x(i)lO)#k)(O ) and {0J}, j = 1 , . . . ,  B is a sample from 
g(O), where B is the number of simulations�9 Defining 
wj =f(k)(x(i)lOi)Tr(k)(OJ)/g(OJ), it follows that a Monte 
Carlo integration for (3) is 

f(k)(xilx(i)) = Z f (k ) (x i lOJ)wj  wj. (5) 
j = l  "= 

If  a Markov chain Monte Carlo technique has been used, 
the output is usually taken to be a sample 0 j, j = 1 , . . . ,  B, 
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from the posterior 7r(k)(0lx). In that case we can take the 
posterior as the importance sampling density in (5) which 
gives rise to 

f(k)(x(i)[OJ)Tr(k)(oj) [f(k)(xilOi )- -1 
wj =f(k)(xlOJ)Tr(k)(oj)/f(k)(x ) = [ f(k)(x ) , 

where f (k) (x) = f f (~:) (x[0)Tr (k) (0) dO is the marginal den- 
sity. Hence the Monte Carlo estimate of the CPO reduces to 

f(k)(xilx(i)) = B (f(k)(xil@))-I , (6) 

which is the harmonic mean of the conditional density of X~ 
given 0 evaluated at the posterior sample values�9 

To obtain other diagnostic plots we need to calculate the 
Monte Carlo estimates of E(k)(.u and Var(k)(xilx(i)). 
It follows that 

E(k) (Xilx(i)) = I E(k) (Xi[O)Tr(k)(0Ix(i)) dO 

-  +(Olx) dO, 
f(k)(x(i)) J ' " ' f(kl(xilO) 

hence a Monte Carlo estimate is given as 

 e+(x;10J) 
k(k)(Xi[x(i)) = f(k)(xilx(il)B-1 z~, f(kl(xilOj) . (7) 

j = l  

Similar argument produces a Monte Carlo estimate of the 
conditional variance as 

N-~ Var(k) (XiiO/) fAk)(Xilx(i)) =/(k)(xi[X(i))g-lz. . .  ~ ~ . (8) 
j = l  

The quantities E(k) (XilO) and Var (k) (XilO) are expressible 
in closed form for the mixture problem�9 All the Monte 
Carlo estimates mentioned above are simulation consistent�9 

4. The normal mixtures 

Here we consider the mixture of normal distributions. We 
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assume 

k 
xi ~ f(k)(x[O) = ~ pjfj(xilOj), i = 1 , . . . ,  n, 

j = l  

k 
0 < p j  < 1, ~ ' ~ p j = l  

j = l  

and f/  is a normal density with parameter 0j = (~/ ,~),  
j = l , . . . , k .  

Further we assume that the prior information can be 
modelled through a conjugate prior on the unknown para- 
meters. In practice the specification of hyperparameters 
may be difficult, so we take the values of hyperparameters 
in such a way that we get non-informative priors in the lim- 
iting case�9 We assume p follows a Dirichlet distribution 
~(al , . . . ,ak) ,  ~j given ~ follows a N(#j,a~/nj) 
distribution and ~rj has a modified inverse gamma 

2 2 distribution with density f ( a j )  c< af 7j- 1 exp (-sj /2aj ), i.e. 
aj ~ IG (Tj, s~). All the hyperparameters are assumed to 
be known. Although we choose all the priors to be 
proper, our analysis would work for improper prior on 
any of the parameters, e.g. f(crj)= af  1. The above prior 
specification may be slightly unrealistic, see Berger (1985), 
but we work with these values for ease of computations. 

4.1. Steps for Gibbs sampler 

The above conjugate prior structure leads to the following 
Gibbs steps which are easy to implement. 

Step I�9 Generate Z i  = (zil , . . . ,  zik) ~ MN (1; 
qil,. . . ,qik) (multinomial) independently for each i, 
i = 1 , . . . ,  n, where 

 exp {--(x i --  j/2/24} 
aj 

qij-- k 

j = l  J 

f o r j  = 1 , . . . , k .  

7 

Model 2 vs. 3 

�9 . . .  �9 . 
�9 ' .  �9 �9 , �9 

l a  2 0  30  40 6 0  

Model 3 vs. 1 

. . . .  �9 �9 

o 

i 
o 

Modal 2 vs. I 

�9 . . o  �9 

i 
6 0  O I0 20 3 0  4 0  ~ 1  

Fig. 1. Log CPO ratios for normal mixture models 
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Step II. Generate 

p ~ ~(c~ 1 + Z . 1 , . .  �9  ak -'}- 2.k), 

where z.j = ~ zij , j = 1, . . .k .  
i=1  

Step III. Generate ~j ~ N(@-O 2) independently for each 
j , j  = 1 , . . . , k ,  where 

n 

nj~j + ~ XiZij -- 0" 2 

i:1 and ~)2 nj+z~'  
= nj + z j  

j = l , . , . , k .  

Step IV. Generate 0.j ~ IG(z.j + 3) + 1,/3j) independently 
for each j,  j = 1 , . . . ,  k, where 

n 

/~J : Z Zij(Xi - # j ) 2  _~_ Hj(~j -- # j ) 2  _~ S2. 

i = l  

4.2. Simulation for the normal mixtures 

First we simulated 50 observations from 0.36 • N ( l l l ,  
529) + 0.64 x N(190, 324) as given in Diebolt and Robert 
(1991). As mentioned earlier we set ~j = 0.5, 
s 2 = 0.000002, ~,j = 3.0 for all j to have an approximate 
non-informative prior selection. We choose r = 0.5 by 
considering Jeffreys' prior selection method. Also we set 
n l = 3  for k = l ;  n1=3,  n2=2 for k = 2  and n 1 = 3 ,  
n 2 = 2, n 3 = 5 for k = 3. 

We took the starting values for different parameters to be 
very dispersed around the true values. We have used 500 
parallel chains and considered the criterion of  Gelman 
and Rubin (1992) to detect convergence. For  k = 1 and 2, 
the Gelman-Rubin  scale reduction factor came down to 1 
within 50 iterations; however, for k = 3, the scale reduc- 
tion factor was slightly larger than 1 even after 2000 itera- 
tions. Then we considered the log of  the density for a few 
parallel chains and following Gelman and Rubin we 
detected convergence within 500 iterations. 

In Fig. 1 we plot log of  the CPO ratios for different 
models with respect to others against the observation 
number. Positive values of  log CPO ratios indicate the 
preference of  the first model with respect to the other. 
For  example, in Fig. 1, the model 2 vs. 3 plot indicates 34 
out of 50 observations support model 2 over model 3. Simi- 
larly, 30 observations support model 3 over model 1, and 31 
observations support model 2 over model 1. Thus, in con- 
clusion, this criterion says that model 2 is the best. 

The same conclusion follows from Figs 2(a) and 2(b), 
i.e. model 2 improves upon model 3 and both improve 
upon model 1 substantially. In terms of  single summary 
measure our calculation shows that lOgl0D1 = - 1 1 4 . 6 2 ,  
lOgl0D2 = -112.85, and logl0D 3 = - 1 1 3 . 1 3 .  In terms of 
the log of  the pseudo-Bayes factor we obtain 
lOgl0 PB23 = 0.28, log10 PB31 = 1.49 and log10 PB21 = 1.77. 
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3 = Modal 3 
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o 
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Fig. 2. ( . )  Plot  o / I x i  oh, - s(X lxl l ob,)l versus X/var (X lxi ),ob,) 
for normal mixture models. (b) Plat'of IXi obs -- E(x(i),obs)l versus 
~/Var( Xilx(i) ) for normal mixture models ' 

Now using Jeffrey's scale of  evidence, it follows that 
model 2 is best. 

We compare the above results with the likelihood 
approach. We simulate the null distribution of  the log like- 
lihood ratio statistic for comparing two models using 500 
bootstrap replicates. Let Lq denote the LR statistic for 
testing a model with i components versus one withj  compo- 
nents, i, j = 1, 2, 3, i < j .  The three null distributions are 
given in Fig. 3. The observed values of the LR test statistics 
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Fig. 3. Bootstrapped null distributions for the simulated normal data 
example�9 Solid line for L12," dotted line for LI3 and dashed line for 
L23 

are 17.05, 18.8 and 1.75 for L12, Ll3 and L23 respectively 
with corresponding approximate P values 0.0001, 0.022 
and 0.59. Hence, this method suggests a two-component 
mixture is a best fit for the data, which is in agreement 
with the Bayesian approach. 

5. The gamma mixtures 

Here we assume that 

k 
Xi ~ f(k)(x[O) = Z PJfJ ' (Xi[OJ) '  i = 1, . . . ,  n, 

j=l  

k 
0 < p j <  1, Z p j = l  

j= l  

where J ) ~  G(aj, bj), (gamma density) with mean aj/bj, 
j =  1 , . . . ,k .  

We assume 'conjugate' prior in the sense of George 
et al. (1993) that is closed under log-concavity for the 
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different parameters in the model. Again we assume 
P "~ ~(" /1 , ' -"  ,')'k), aj ~,~ G(1,Aj),  bj ,,, G(OLj,/~j) and all 
prior distributions are independent�9 

5 . 1 .  Steps for Gibbs sampler 

For the above model we have the following Gibbs 
steps. 

Step L Generate Z = (z i l , . . .  ,zik) ~ MN(1; qi l , . . . ,  qik) 
independently for each i, i = 1, . . . ,  n, where 

b + 
PJ -j xaJ-1 exp { -b jx i}  r( j) 

qij = k haJ 
uj aj-1 

pj ~ x, exp {-bjxi} 

for each j = 1, . . . ,  k. 
Step II. Generate 

P ~ ~ ( 'h  + z l , . . . , T k  +z.k). 

Step IlL Generate 

( ") 
i=1 

independently for each j, j = 1, . . . ,  k. 
Step IV. Generate aj independently for each j, 

j = 1 , . . . ,k ,  where 

x? exp(-AjaA 
f (a j )  oc (r(aj)iz, 

Note that the density in step IV is not a standard one. 
Therefore to sample from this distribution we ran one 
trajectory of the random increment Metropolis algorithm. 
We started the algorithm at the mode and ran 50 iterations 
to get our sample. Alternatively, we note that the above dis- 
tribution is log-concave (see George et al., 1993). So the 

Model 3 vs. 2 
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Fig. 4. Log CPO ratios for gamma mixture models 
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adaptive rejection sampling of Gilks and Wild (1992) can be 
considered. 

5.2. Analysis of Halley's data using gamma mixtures 

For Halley's mortality table as described in Nelson (1982, 
p. 17), Jaisingh et al. (1987) proposed a bathtub hazard 
model and fitted the model using the maximum likelihood 
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Fig. 5. (a) Plot of [Xi,obs -- E(Xilx(i)obs)l versus ~/Var(Xitx(i),obs) 
for gamma mixture models. (b) Plot of [Xiobs- E(Xilxioobs) I 
versus x/Var(Xilx(i)obs)for gamma mixture mo'dels 
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0 1'o a'o 3'0 40 50 

Fig. 6. Bootstrapped null distributions for Halley's data example. 
Solid line for LI2," dotted line for L13 and dashed line for L23 

estimates. The hazard plot for this data indicates its 
bathtub nature. From the density and the hazard plot 
it is anticipated that the density function can be 
approximated by appropriate gamma mixtures. The 
data was given in frequency counts where the number 
of deaths was given in categories of increment of 5 
years. We simulated 100 observations from the table 
using a simple random sampling scheme and sub- 
sequently drawing one observation uniformly in the 
selected category. 

We use the following values of the hyperparameters 
q) = 0.5, Aj = 0.00001, aj = 1.0, 3j = 0.00002 for all j in 
the gamma mixture model. Note that these correspond to 
a non-informative prior in the limiting case. 

We took the starting values for different parameters very 
dispersed and used 500 parallel chains. As in Section 4.2 we 
used the Gelman-Rubin criterion to detect convergence 
and in all three cases convergence was achieved within 
500 iterations. 

As in Section 4.2, in Fig. 4 we plot the log of the CPO 
ratios for different models with respect to others against 
the observation number. In Fig. 4, the model 3 versus 
model 2 plot indicates that 62 out of 100 observations 
support model 3 over model 2. Similarly, 77 observations 
support model 3 over model 1, and 81 observations 
support model 2 over 1. So here this criterion says that 
model 3 is the best fit for the data. 

The above conclusion is also supported by Figs 5a and 
5b. In terms of single summary measure our calculation 
shows the logl0D1-----200.5, log10D2=--186.98, and 
logl0D 3 =-187 .47 ,  and in terms of the pseudo-Bayes 
factors log10 PB32 = -0.49, log10 PB31 = 13.03 and 
logl0 PB21 = 13.52. Again, using Jeffreys' scale of evidence 
it suggests that both models 2 and 3 are much better than 
model 1 and there is slight evidence against model 3 with 
respect to model 2. 

Here also we compare our results with the likelihood 
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approach. We simulate 500 replications of  the three LR sta- 
tistics, L12, L13 and L23. The null distributions so con- 
structed are given in Fig. 6. The observed values of the 
test statistics are 42.39, 47.57 and 5.18 with corresponding 
approximate P values 0, 0 and 0.26. This method chooses 
the two-component mixture model as the best fit for the 
data. So the two approaches give different results for this 
example. 

6. Concluding remarks 

Our efforts here have focused on modelling data through mix- 
tures of  several distributions and the determination of the 
number of  mixture components. We have demonstrated our 
procedures with normal and gamma mixtures. However, 
our methods extend to other mixtures, such as mixtures of  
beta distributions (see Gelfand et al., 1995), mixtures of  
exponential distributions and mixtures oflognormal distribu- 
tions. The results can also be extended to multivariate prob- 
lems. For example, in the normal mixture problem the 
normal-gamma prior is replaced by the multivariate 
normal-Wishart prior. When observations are d-variate, dis- 
play of the entire predictive distribution is not feasible; how- 
ever, predictive distributions of one variable, or joint 
predictive distributions of  two variables, conditional on 
values of the remaining variables can be produced. 

Another generalization of  the mixture models is to 
deal with dependent data. One way to introduce depen- 
dence in the model consists in allowing the probability p~ 
that an observation comes from the j th  group to be a func- 
tion of  the preceding observations, which could be mod- 
elled through a Markov chain. This will be pursued 
elsewhere. 
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